National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Design of the electric locomotive drive
Dočekal, Martin ; Klíma, Bohumil (referee) ; Patočka, Miroslav (advisor)
The focus of the work is the calculation and design of battery-powered drive of locomotive, operating in the sub-siding mode, ie when the locomotive is moving on the track section without the overhead line. The proposed battery groups to ensure the drive train will be installed directly into the locomotive engine room. In the theoretical part of the work there has been done the analysis of the electrical locomotives and electrical unit, which nowadays are used in the Czech Republic in driving of voltage controller with the integrated circuit. Then, in the chapter there is a brief description modern locomotives frequency convertor’s and rectifier’s function. The practical part of the work contains the necessary force and energy calculation for train moving on the determined rails. On the base of the received data, the design of battery groups has been done. These battery groups will work as an independent traction which insures the moving of the train on the determined rails. In the work the design, which consists of STEP-UP and STEP-DOWN convertors, has also been done. The power model and model management were created in Matlab Simulink programme. Data and graphs exported from the Matlab Simulink programm are determined for verifying convertor’s function, which can be found in a separate chapter. In addition to the proposal of the battery drive is at work also has been calculated loss of traction rectifier during normal operation of the locomotive, ie outside siding mode. For this calculation, in the conclusion is listed the theory of calculation of the losses incipient in the transistor and freewheeling diode of rectifier. According to the theory own calculation is performed. Subsequently the liquid cooler calculation of the rectifier is calculated.
Design of the electric locomotive drive
Dočekal, Martin ; Klíma, Bohumil (referee) ; Patočka, Miroslav (advisor)
The focus of the work is the calculation and design of battery-powered drive of locomotive, operating in the sub-siding mode, ie when the locomotive is moving on the track section without the overhead line. The proposed battery groups to ensure the drive train will be installed directly into the locomotive engine room. In the theoretical part of the work there has been done the analysis of the electrical locomotives and electrical unit, which nowadays are used in the Czech Republic in driving of voltage controller with the integrated circuit. Then, in the chapter there is a brief description modern locomotives frequency convertor’s and rectifier’s function. The practical part of the work contains the necessary force and energy calculation for train moving on the determined rails. On the base of the received data, the design of battery groups has been done. These battery groups will work as an independent traction which insures the moving of the train on the determined rails. In the work the design, which consists of STEP-UP and STEP-DOWN convertors, has also been done. The power model and model management were created in Matlab Simulink programme. Data and graphs exported from the Matlab Simulink programm are determined for verifying convertor’s function, which can be found in a separate chapter. In addition to the proposal of the battery drive is at work also has been calculated loss of traction rectifier during normal operation of the locomotive, ie outside siding mode. For this calculation, in the conclusion is listed the theory of calculation of the losses incipient in the transistor and freewheeling diode of rectifier. According to the theory own calculation is performed. Subsequently the liquid cooler calculation of the rectifier is calculated.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.